Bachelor Program in Mathematics Faculty Mathematics and Natural Sciences HASANUDDIN UNIVERSITY

Module Description of Introduction to Digital Image Processing

_		
Module Name	:	Introduction to Digital Image Processing
Module Level	:	Bachelor
Code, if applicable	:	23H01130903
Subtitle, if applicable	:	-
Courses, if applicable	:	Introduction to Digital Image Processing
Semester(s) in which the module is taught	:	5 (Fifth Semester)
Module coordinator(s)	:	Prof. Dr. Eng. Mawardi, S.Si., M.Si.
Lecturer(s)	:	Prof. Dr. Eng. Mawardi, S.Si., M.Si.
Language	:	Bahasa (Indonesian language)
Relation to curriculum	:	Elective course in third year for Bachelor degree in Mathematics and Set Theory
Type of teaching/teaching method	:	Lecturing, Small Group Discussion, Cooperative Learning, Self- Directed Learning
Contact hours	:	150 minutes lectures per week, 180 minutes structured activities per week, and 180 minutes independent study per week
Workload	:	Total workload is 135 hours per semester which consists of 40 hours per semester for Learning and Teaching, 47.5 hours per semester for Self-Study, and 47.5 hours per semester for Structured Works
Credit points	:	3 (4.8 ECTS)
Requirements according to the examination regulations	:	Students are required to attend at least 80% of the total meetings which is recorded via the attendance menu at https://sikola-v2.unhas.ac.id/, complete all mandatory assignments, and obtain permission from the lecturer to participate in the written examination.
Recommended	:	Students have completed and taken the exams for Basic
prerequisites		Mathematics II
Module	:	After the completion of this module, the student will be able
objectives/intended learning outcomes		to: CLO 1. Understand the definition of metric spaces and determine their completeness; CLO 2. Understand the definition of convolution and correlation and apply them in image processing;
		CLO 3. Process or transform images using Fourier and discrete Wavelet transforms; CLO 4. Demonstrate image restoration and provide simple
		examples; The following is the mapping of the ILO and the CLO of this course:

Bachelor Program in Mathematics Faculty Mathematics and Natural Sciences HASANUDDIN UNIVERSITY

		ILO 1 ILO 6 ILO 7
		CLO 1 X
		CLO 2 X X
		CLO 3 X
_		CLO 4 X
Content	:	This elective course is designed to provide students with
		additional skills in digital image processing, which are widely
		required in various applications such as healthcare,
		broadcasting, and other fields. The course covers the
		fundamentals of digital image processing, image
		transformation, spatial filtering, frequency domain processing,
		Fourier and Wavelet transforms, image restoration, color image
		processing, and image segmentation.
Study and examination	:	Study and examination requirements:
requirements		 Students must attend 15 minutes before the class starts.
		 Students must switch off all electronic devices.
		• Students must inform the lecturer if they will not attend the
		class due to sickness, etc.
		 Students must submit all class assignments before the
		deadline.
		 Students must attend the exam to get final grade.
Exams and assessment	:	Participants are marked based on their performance in theory:
formats		Report (60%), Assignments (20%), Presentation (20%).
		Assignments assess student's ability to apply concepts
		independently, while Reports measure analytical and writing
		skills. Presentations evaluate oral communication, organization
		of ideas, and confidence in delivering academic material.
		Altogether, these components account for 100% of the final
		grade.
		8. 4.4.4
		Students are marked based on their percentage of points
		obtained and based on the following grade scale:
		Percentage of Conversion
		Achievement Grade Value
		85 – 100 A 4.00
		80 - <85 A- 3.75
		75 - < 80 B+ 3.5
		70 - < 75 B 3.0
		65 - < 70 B- 2.75
		60 - < 65 C+ 2.5
		50 - < 60 C 2.00
		40 - < 50 D 1.00
		< 40 E 0.00
Reading list	:	1. Gonzalez, R.C., and Woods, R.E., 1992, Digital Image
	1	Processing, Addison-Wesley.

Bachelor Program in Mathematics Faculty Mathematics and Natural Sciences HASANUDDIN UNIVERSITY

		2. Gerhard X. Ritter & Joseph N. Wilson, 1996, Handbook of
		Computer Vision Algorithms in Image Algebra, CRC Press.
		3. Wijaya, M. Ch., & Prijono, Agus, 1997, Digital Image
		Processing Using Matlab, Informatika, Bandung.
Last revision date	:	July 28th, 2025