SEMESTER LEARNING PLAN

NUMERICAL METHODS COURSES (23H01120503)

TEACHING TEAM

Prof. Dr. Syamsuddin Toaha, M.Sc. 196801141994121001

Prof. Agustinus Ribal, S.Si.,M.Sc., Ph. D 197508161999031001

Dr. Khaeruddin, M.Sc. 196509141991031003

STUDI PROGRAM OF MATHEMATICS - S1
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
HASANUDDIN UNIVERSITY
MAKASSAR
2025

STUDY PROGRAM OF MATEMATIKA - S1 FACULTY OF MATHEMATICS AND NATURAL SCIENCES HASANUDDIN UNIVERSITY

Vision

The scientific vision is to become a study program with an international reputation in the development of mathematics based on the Indonesian maritime continent by 2030

Vision Strategy

Misson

To fulfill the above vision, the Undergraduate Mathematics Study Program has four missions, namely:

- Organizing innovative and effective mathematics learning to improve the quality and creativity of students in order to compete nationally and internationally.
- Improving a research culture that produces internationally reputable publications.
- Playing an active role in community service activities and collaborating with other academic institutions, government, business, media and society.
- Carry out governance in the Mathematics Study Program that is effective, efficient and transparent based on IT and ISO 9001:2015 standards to achieve the tridharma goals.

Graduate Profiles

Gagal diterjemahkan

PLO charged to courses

- CPL-9 (S2) The students are able to adapt and develop self-abilities, both in mathematics and other relevant areas of science in their professional lives
- CPL-2 (P2) The students are able to identify objects, techniques, and theorems in fundamental mathematics, and making a connection for solving problems
- CPL-3 (KU1) The students are able to analyse a mathematical problem with logic, analytic, and systematic structure
- CPL-6 (KK2) The students are able to apply the mathematical method for solving a mathematical relatedproblem with or without the aid of computers and software
- CPL-7 (KK3) The students are able to demonstrate mathematical skills which include interpretation, connecting problems, solving problems, and communicating individually or teamwork

Course Learning Outcomes (CLO)

- CPMK-1: Identify techniques and methods in solving numerical methods and make connections to solve numerical method problems. (CPL2 dan CPL3)
- CPMK-2: Use concepts effectively to solve numerical methods problems in mathematics, science and engineering. (CPL9, CPL2 dan CPL3)
- CPMK-3: Demonstrate their understanding of numerical methods concepts through the use of appropriate technology. (CPL2 dan CPL6)
- CPMK-4: Communicate mathematical ideas in appropriate contexts both orally and in writing with groups, especially using numerical methods. (CPL2 dan CPL7)

Sub-CLO

Sub CPMK-1: Students are able to explain the meaning of numerical methods, the need for numerical

- methods, the stages of numerical methods and errors. (CPMK-1 dan CPMK-2)
- Sub CPMK-2: Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods (CPMK-1, CPMK-3 dan CPMK-4)
- Sub CPMK-3: Students are able to determine the determinant and inverse of a matrix numerically (CPMK-2, CPMK-3 dan CPMK-4)
- Sub CPMK-4: Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods. (CPMK-2, CPMK-3 dan CPMK-4)
- Sub CPMK-5: Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs. (CPMK-1, CPMK-3 dan CPMK-4)
- Sub CPMK-6: Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods. (CPMK-1, CPMK-3 dan CPMK-4)
- Sub CPMK-7: Students are able to apply several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. · Able to create computer programs for the numerical methods above. (CPMK-1, CPMK-3 dan CPMK-4)

Learning Analytics

Numerical Methods

Students are able to apply several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. · Able to create computer programs for the numerical methods above. (CPMK-1, CPMK-3 dan CPMK-4)

Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods. (CPMK-1, CPMK-3 dan CPMK-4)

Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs. (CPMK-1, CPMK-3 dan CPMK-4)

Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods. (CPMK-2, CPMK-3 dan CPMK-4)

Students are able to determine the determinant and inverse of a matrix numerically (CPMK-2, CPMK-3 dan CPMK-4)

Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods (CPMK-1, CPMK-3 dan CPMK-4)

Students are able to explain the meaning of numerical methods, the need for numerical methods, the stages of numerical methods and errors. (CPMK-1 dan CPMK-2)

Have passed the course Basic Mathematics I, Basic Mathematics II and Algorithms and Programming

HASANUDDIN UNIVERSITY FAKULTY OF MATHEMATICS AND NATURAL SCIENCES STUDY PROGRAM OF MATHEMATICS - S1 SEMESTER LEARNING PLAN

Course		Code	Code Cource Group		Credits	SEMESTER	Compilation Date	
Numerical Me	ethods	23H01120503	Ap	oplied Mathematics	3	3	8 Februari 2025	
		SLP Developer L	ecturer	Coordinator		Head	of Study Program	
AUTHORITY		yamsuddin Toaha, Ribal, S.Si.,M.Sc.,		Prof. Agustinus Ribal, S.Si.,M.	Sc., Ph. D	Dr. F	irman, S.Si.,M.Si.	
SLOs that are	SLOs that are imposed on the course							
SLO-9:	Mahasiswa dapat be profesional mereka,			ampuan diri, baik dalam matematika yat	dan bidang	ilmu lain yang releva	an dalam kehidupan	
SLO-2:	Mahasiswa mampu	nengidentifikasi ol	ojek, teknik, dan sifa	at dalam matematika dasar, dan me	mbuat konel	si untuk menyelesai	kan masalah	
SLO-3:	Mahasiswa mampu	nenganalisis suatı	ı masalah matemat	ika dengan logika, analitik, dan stru	ktur sistema	is		
SLO-6:	Mahasiswa dapat me lunak	Mahasiswa dapat menerapkan metode matematika untuk memecahkan masalah terkait matematika dengan atau tanpa bantuan komputer dan perangkat lunak						
SLO-7:		Mahasiswa dapat menunjukkan keterampilan matematika termasuk menghubungkan masalah, menyelesaikan masalah, interpretasi, dan berkomunikasi secara individu atau dengan kerja tim						
SLO ⇒ Cours	e Learning Outcomes							
After completion	ng this course, it is expecte	ed:			•			
	CLO-1: Identify tech	niques and method	ds in solving numer	ical methods and make connections	to solve nui	nerical method prob	ems.	
SLO-2	CLO-2: Use concept	CLO-2: Use concepts effectively to solve numerical methods problems in mathematics, science and engineering.						
SLU-Z	CLO-3: Demonstrate	CLO-3: Demonstrate their understanding of numerical methods concepts through the use of appropriate technology.						
CLO-4: Communicate mathematical ideas in appropriate contexts both orally and in writing with groups, especially using numerical methods.				rical methods.				
		CLO-1: Identify techniques and methods in solving numerical methods and make connections to solve numerical method problems.						
81.0.2	CLO-1: Identify tech	niques and method	ds in solving numer	ical methods and make connections	to solve nui	nerical method probl	ems.	
SLO-3	-	<u> </u>		ical methods and make connections ods problems in mathematics, science		· · · · · · · · · · · · · · · · · · ·	ems.	
SLO-3	CLO-2: Use concept	s effectively to sol	ve numerical metho		ce and engin	eering.	ems.	

SLO-7	CLO-4: Communicate mathematical ideas in appropriate contexts both orally and in writing with groups, especially using numerical methods.
CLO ⇒ Sub-C	CLO
	Sub-CLO-1: Students are able to explain the meaning of numerical methods, the need for numerical methods, the stages of numerical methods and errors.
	Sub-CLO-2: Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods
CLO-1	Sub-CLO-5 :Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs.
	Sub-CLO-6:Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods.
	Sub-CLO-7:Students are able to apply several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. · Able to create computer programs for the numerical methods above.
	Sub-CLO-1: Students are able to explain the meaning of numerical methods, the need for numerical methods, the stages of numerical methods and errors.
CLO-2	Sub-CLO-3:Students are able to determine the determinant and inverse of a matrix numerically
	Sub-CLO-4 :Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods.
	Sub-CLO-2:Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods
	Sub-CLO-3:Students are able to determine the determinant and inverse of a matrix numerically
	Sub-CLO-4: Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods.
CLO-3	Sub-CLO-5 :Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs.
	Sub-CLO-6 :Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods.
	Sub-CLO-7:Students are able to apply several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. · Able to create computer programs for the numerical methods above.
	Sub-CLO-2: Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods
	Sub-CLO-3:Students are able to determine the determinant and inverse of a matrix numerically
	Sub-CLO-4: Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods.
CLO-4	Sub-CLO-5 :Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs.

Learning Outcomes Course **Sub-CLO-6:**Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods.

Sub-CLO-7:Students are able to apply several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. · Able to create computer programs for the numerical methods above.

Correlation between SLOs/CLOs to Sub-CLOs

SLOs that are				Form of	n of Assessment [*]				
charged on the Course	СРМК	SUB CPMK	Formative	Sumative			Weight	Value	Student Score
on the Course			Formative	Case Studies	Written Exam	Written Exam			
SLO-7	CLO-4	SUB-CLO-2		15	15	0	30		
SLO-7	CLO-4	SUB-CLO-3		10	10	0	20		
SLO-7	CLO-4	SUB-CLO-4		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-5		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-6		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-7		10	0	10	20		
				50	25	25	100		

Course Description

This course provides several basic and important concepts about numerical methods. This course provides students with the opportunity to practice creative thinking in solving numerical method problems. With reference to the targets above, this course is given with an emphasis on giving students relatively a lot of time to do problem-solving ranging from simple problems to quite complex ones. This course provides additional skills in the form of using computer tools to create simple simulations to understand mathematics using numerical methods. The material for this course includes: This course introduces several numerical methods for solving mathematical problems, such as determining the roots of nonlinear equations, solving Systems of Linear Equations, Interpolation, Derivative Approaches, Integrals, and Differential Equations.

Learning Materials/Subjects

- 1. Transmission Error Transmission
- 2. Roots of Non-Linear Equations,
- 3. Systems of Linear Equations
- 4. Interpolation
- 5. Numerical Derivation
- 6. Numerical Differential Equations
- 7. Numerical Integrals

	Main References					
Reference	 An Introduction to Numerical Methods A MATLAB Approach, Abdelwahab Kharab, Ronald B. Guenther, Chapman and Hall/CRC, 2002 Advance Engineering Mathematics, Michael D. Greenberg (2rd edition), Prentice Hall, 1998 					
	Additional References					
	1. Abbaszadeh, M., Azis, M. I., & Dehghan, M. (2024). A mesh-free method using Pascal polynomials for analyzing space-fractional PDEs in irregular biological geometries. Engineering Analysis with Boundary Elements, 169, 105932. https://doi.org/10.1016/j.enganabound.2024.105932					
Teaching Team	Prof. Dr. Syamsuddin Toaha, M.Sc., Prof. Agustinus Ribal, S.Si.,M.Sc., Ph. D, Dr. Khaeruddin, M.Sc.					
Course requirement	Basic Mathematics I, Basic Mathematics II, Algorithms and Programming					

We	Sub CPMK (End-of-stage learning a		(Assesment)	_	Learning Forms and Methods [time estimate] Conte		Weight of Assessment	
	(End-or-stage learning a	Indicator	Techniques & Criteria	Offline	Online		(%)	
1	2	3	4	5	6	7	8	
1	Students are able to expla meaning of numerical met the need for numerical me the stages of numerical methods and errors. (CPM CPMK-2)	nods, hods, Gagal diterjemahkan		Studying: Group discussion (Small Group Discussion) Gagal diterjemahkan 3x2x50		Learning Contract, Description & Course Competencies, Introduction to Numerical Methods, Reasons for Using Numerical Methods, Characteristics of Numerical Methods, Stages of solving numerical methods, Algorithm Review.	0	

2-4	Students are able to apply numerical methods in solving nonlinear equations. Students are able to create computer programs for the given numerical methods (CPMK-1, CPMK-3, CPMK-4)	Formative: Gagal diterjemahkan Sumative: Students can find the roots of nonlinear equations and can create programs to carry out iterations according to the numerical methods given using computer assistance.	Formative Criteria: Sumative Criteria: Case Studies (15) dinilai dengan rubrik 01 Assessment Technique: Gagal diterjemahkan	Studying: Group discussion (Small Group Discussion) Gagal diterjemahkan 3x2x50	Solving Nonlinear Equations Split Two Method False Position Method Initial Guess Problem / Root Localization. Polynomial Root Localization False Position Modification Method Newton-Raphson Method Bowstring / Sekan Method Comparison between Confined and Open methods Modification of Newton's Method for Polynomials	15
5-7	Students are able to determine the determinant and inverse of a matrix numerically (CPMK-2, CPMK-3, CPMK-4)	Formative: Gagal diterjemahkan Sumative: Students can use matrix concepts to solve Systems of Linear Equations numerically.	Formative Criteria: Sumative Criteria: Case Studies (10) dinilai dengan rubrik 01 Assessment Technique: Gagal diterjemahkan	Studying: Group discussion (Small Group Discussion) 3x2x50	Matrix and System of Linear Equations 1. System of linear equations (SPL). 2. Upper and lower triangular SPL. 3. Gaussian Elimination Method 4. Determinant calculation. 5. Inverse calculation. 6. Elimination modification Gauss. 7. Triangle factorization. 8. Jacobi method and Gauss Seidel method	10

8	Written Exam					25
9-10	Students are able to apply several interpolation methods for curve matching and are able to create computer programs for numerical interpolation methods. (CPMK-2, CPMK-3, CPMK-4)	Sumative: Students are able to find functions that represents the given data and is able to predict pairs of data points in the range of existing data through the functions that have been obtained and is able to create coding programs for numerical interpolation problems.	Formative Criteria: Sumative Criteria: Case Studies (5) dinilai dengan rubrik 01 Assessment Technique: Gagal diterjemahkan	Studying: Group discussion (Small Group Discussion) Gagal diterjemahkan 2x2x50	Curve fitting using the interpolation method 1.Taylor polynomials. 2.Lagrange interpolation polynomials. 3.Newton interpolation polynomials. 4.Piecewise interpolation and Cubic splines 5. Regression (linear and non-linear) Curve fitting for interpolation method	5
11	Students are able to apply the concept of Taylor series expansion in approximating the derivative of a function, and are able to solve derivative approximation problems using computer programs. (CPMK-1, CPMK-3, CPMK-4)	Formative: Gagal diterjemahkan Sumative: Students can make differences up to forward differences, backward differences, middle differences, cutting errors to estimate errors from Taylor series expansions and are able to create computer programs for approximation problems derivative	Formative Criteria: Sumative Criteria: Case Studies (5) Assessment Technique: Gagal diterjemahkan	Studying: Group discussion (Small Group Discussion) 1x2x50	Calculating the approximate value of the derivative with error using Taylor series expansion -Forward difference method -Backward difference method -Mid difference method -Truncation error	5

12-13	Students are able to apply several numerical methods in determining the integral of a function and are able to create programs for numerical methods. (CPMK-1, CPMK-3, CPMK-4)	Formative: Gagal diterjemahkan Sumative: Students can use numerical methods to calculate the integral of a function using the Simpson 1/3 trapezium rule, Simpson 3/8 trapezium composit rule, Simpson 1/3, Simpson 3/8, Romberg integral and the Gauss quadrature method Formative:	Formative Criteria: Sumative Criteria: Case Studies (5) Assessment Technique: Gagal diterjemahkan	Studying: Group discussion (Small Group Discussion) Gagal diterjemahkan 2x2x50 Studying:	Numerical Integration 1. Trapezium rule, Simpson1/3, Simpson 3/8 2. Composite trapezium rule, Simpson1/3, Simpson 3/8 3.Romberg integral 4.Gaussian quadrature	10
17-10	several Taylor series methods, Euler's method, Heun's method and Runge Kutta's method of order 2 and 4 in solving ordinary differential equations. Able to create computer programs for the numerical methods above. (CPMK-1, CPMK-3, CPMK-4)	Sumative: Students can find solutions to ordinary differential equations using numerical methods such as the Taylor series method, the Taylor Series method, the Taylor Series method. Euler, Heun's method and Runge kutta's method and being able to create programs on a computer regarding the above problems.	Sumative Criteria: Case Studies (10) dinilai dengan rubrik 01 Assessment Technique: Gagal diterjemahkan	Group discussion (Small Group Discussion) 2x2x50	Introduction to solutions of ordinary differential equations 1.Taylor series method. 2.Euler and Heun method 3. Runge Kutta method 2nd and 4th order (Supporting [1])	
16	Written Exam					25

Matrix of SLO, CLO, and Assessment Method

SLO / CLO	CLO-1	CLO-2	CLO-3	CLO-4
CPL-2 (P2)	Case Studies (Weight 15%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)	Case Studies (Weight 10%) Case Studies (Weight 5%)	Case Studies (Weight 15%) Case Studies (Weight 10%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)	Case Studies (Weight 15%) Case Studies (Weight 10%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)
CPL-3 (KU1)	Case Studies (Weight 15%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)	Case Studies (Weight 10%) Case Studies (Weight 5%)		
CPL-6 (KK2)			Case Studies (Weight 15%) Case Studies (Weight 10%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)	

SLO / CLO	CLO-1	CLO-2	CLO-3	CLO-4
CPL-7 (KK3)				Case Studies (Weight 15%) Case Studies (Weight 10%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 5%) Case Studies (Weight 10%)
CPL-9 (S2)		Case Studies (Weight 10%) Case Studies (Weight 5%)		

Evaluation Type and Assessment Weight

Туре	Assessment Weight
Case Studies	50
Written Exam	25
Written Exam	25
Total	100

Assessment and Evaluation of Student Achievement of CLOs

SLOs that are charged on the Course	CLO	SUB CLO	Form of Assessment [*]						
			Formative	Sumative			Weight	Value	Student Score
				Case Studies	Written Exam	Written Exam			
SLO-7	CLO-4	SUB-CLO-2		15	15	0	30		
SLO-7	CLO-4	SUB-CLO-3		10	10	0	20		
SLO-7	CLO-4	SUB-CLO-4		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-5		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-6		5	0	5	10		
SLO-7	CLO-4	SUB-CLO-7		10	0	10	20		
				50	25	25	100		

Lampiran Rubrik 01 | ASSESMENT TERTULIS

Kaltania Banilaian	Bobot/Skor Penilaian								
Kriteria Penilaian	5	4	3	2	1/0				
Konsep/ metode yang digunakan	Penjelasan konsep /metode (*) sangat lengkap dan akurat	Penjelasan konsep/metode (*) cukup jelas tetapi beberapa informasi tidak dituliskan secara lengkap.	Penjelasan konsep/metode (*) kurang jelas dan banyak informasi yang tidak dituliskan	Penjelasan yang dituliskan hampir tidak berkaitan dengan konsep/ metode (*)	Tidak memberikan konsep yang dibutuhkan				
Sistematika penulisan/ pembuktian	Sistematika penulisan/ pembuktian sangat jelas dan terstruktur	Sistematika penulisan/ pembuktian cukup jelas namun ada langkah yang hilang Sistematika penulisan/ pembuktian kurang jelas		Sistematika penulisan/ pembuktian tidak jelas	Jawaban tidak benar/ tidak ada				
Interpretasi geometri/ kualitatif/ kuantitatif.	Interpretasi geometri/ kualitatif/ kuantitaBtif (*) tepat dan lengkap	Interpretasi geometri/ kualitatif/ kuantitatif (*) cukup lengkap/ tepat	Interpretasi geometri/ kualitatif/ kuantitatif (*) kurang lengkap/ tepat	Interpretasi geometri/ kualitatif/ kuantitatif(*) tidak lengkap/ tepat	Interpretasi geometri/ kualitatif/kuantitatif(*) tidak benar				
Perhitungan/kesimpulan	Perhitungan/ kesimpulan sangat akurat/tepat dan disertai alasan yang mendasarinya	Perhitungan/ kesimpulan cukup akurat/tepat dan disertai alasan yang mendasarinya	Kesimpulan cukup tepat, namun tidak disertai alasan yang jelas	Perhitungan/ kesimpulan kurang akurat/tepat dan tidak disertai alasan yang mendasarinya	Perhitungan/kesimpulan salah				