SEMESTER LEARNING PLAN

ALGEBRAIC STRUCTURE COURSES (23H01121403)

TEACHING TEAM

Prof. Dr. Amir Kamal Amir, M.Sc. 196808031992021001

Dra. Nur Erawati, M.Si. 196909121993032001

STUDI PROGRAM OF MATHEMATICS - S1
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
HASANUDDIN UNIVERSITY
MAKASSAR
2025

STUDY PROGRAM OF MATEMATIKA - S1 FACULTY OF MATHEMATICS AND NATURAL SCIENCES HASANUDDIN UNIVERSITY

Vision

The scientific vision is to become a study program with an international reputation in the development of mathematics based on the Indonesian maritime continent by 2030

Vision Strategy

Misson

To fulfill the above vision, the Undergraduate Mathematics Study Program has four missions, namely:

- Organizing innovative and effective mathematics learning to improve the quality and creativity of students in order to compete nationally and internationally.
- Improving a research culture that produces internationally reputable publications.
- Playing an active role in community service activities and collaborating with other academic institutions, government, business, media and society.
- Carry out governance in the Mathematics Study Program that is effective, efficient and transparent based on IT and ISO 9001:2015 standards to achieve the tridharma goals.

Graduate Profiles

Gagal diterjemahkan

PLO charged to courses

- CPL-2 (P2) The students are able to identify objects, techniques, and theorems in fundamental mathematics, and making a connection for solving problems
- CPL-3 (KU1) The students are able to analyse a mathematical problem with logic, analytic, and systematic structure
- CPL-4 (KU2) The students are able to use their sufficiently mathematical critical thinking for abstraction and generalization of a mathematical problem

Course Learning Outcomes (CLO)

- CPMK-1: Students will be able to use the concepts of groups and rings to prove theorems in Algebra (CPL2 dan CPL3)
- CPMK-2: Students will be able to apply theorems to prove other results in Algebra (CPL2 dan CPL3)
- CPMK-3: Students will be able to communicate mathematical ideas both orally and in writing with groups. (CPL4)

Sub-CLO

- Sub CPMK-1: Understand well the objectives, uses of course material and its relationship to other coursesKnowing students' initial competencies. (CPMK-1)
- Sub CPMK-2: Students can differentiate binary operators from non-binary operators, and can express each binary operation as a function. (CPMK-1)
- Sub CPMK-3: Students can distinguish between a set equipped with a binary operator and whether it is a (sub-) group or not a (sub-) group. Can give examples of semi-groups or monoids that are not groups. (CPMK-1 dan CPMK-3)
- Sub CPMK-4: Students are able to recognize the properties or characteristics of groups and subgroups through proving theorems. (CPMK-2)

- Sub CPMK-5: Students can express cyclic groups in '+' notation or times notation, apply Euclid's Quotient Algorithm to simplify high-rank numbers and are able to give simple examples of commutative rings from sets of numbers. (CPMK-1 dan CPMK-2)
- Sub CPMK-6: Students can carry out computations related to permutations and are able to provide examples of permutation groups, especially Sn and An. (CPMK-2)
- Sub CPMK-7: Students are able to recognize the properties or characteristics of cyclic groups and permutation groups. (CPMK-2)
- Sub CPMK-8: Students can apply the concept of function between two groups to express or compare the many elements of the two groups. (CPMK-1)
- Sub CPMK-9: Students are able to express a group of finite extended variables in the form of a group product. (CPMK-2)
- Sub CPMK-10: Students are able to recognize the properties or characteristics of coset groups and finite abel groups. (CPMK-1 dan CPMK-3)
- Sub CPMK-11: Students can prove the well-defined nature of intercoset operations, able to provide several normal subgroup criteria. (CPMK-1)
- Sub CPMK-12: Students can understand the 'similarities' of the structure of two different groups. (CPMK-2)
- Sub CPMK-13: Students recognize several consequences of the concepts of simple group, center, centralizer and normalizer. (CPMK-2)
- Sub CPMK-14: Students are able to prove and give examples of sets with two binary operators which are rings. (CPMK-1 dan CPMK-3)

Learning Analytics

Algebraic Structure

Students are able to prove and give examples of sets with two binary operators which are rings. (CPMK-1 dan CPMK-3)

Students recognize several consequences of the concepts of simple group, center, centralizer and normalizer. (CPMK-2)

Students can understand the 'similarities' of the structure of two different groups. (CPMK-2)

Students can prove the well-defined nature of intercoset operations, able to provide several normal subgroup criteria. (CPMK-1)

Students are able to recognize the properties or characteristics of coset groups and finite abel groups. (CPMK-1 dan CPMK-3)

Students are able to express a group of finite extended variables in the form of a group product. (CPMK-2)

Students can apply the concept of function between two groups to express or compare the many elements of the two groups. (CPMK-1)

Students are able to recognize the properties or characteristics of cyclic groups and permutation groups. (CPMK-2)

Students can carry out computations related to permutations and are able to provide examples of permutation groups, especially Sn and An. (CPMK-2)

Students can express cyclic groups in '+' notation or times notation, apply Euclid's Quotient Algorithm to simplify high-rank numbers and are able to give simple examples of commutative rings from sets of numbers. (CPMK-1 dan CPMK-2)

Students are able to recognize the properties or characteristics of groups and subgroups through proving theorems. (CPMK-2)

Students can distinguish between a set equipped with a binary operator and whether it is a (sub-) group or not a (sub-) group. Can give examples of semi-groups or monoids that are not groups. (CPMK-1 dan CPMK-3)

Students can differentiate binary operators from non-binary operators, and can express each binary operation as a function. (CPMK-1)

Understand well the objectives, uses of course material and its relationship to other coursesKnowing students' initial competencies. (CPMK-1)

Have passed the course Linear Algebra II

HASANUDDIN UNIVERSITY FAKULTY OF MATHEMATICS AND NATURAL SCIENCES STUDY PROGRAM OF MATHEMATICS - S1 SEMESTER LEARNING PLAN

AUT S S S		Dra. Nur Era	23H01121403 SLP Developer Loawati, M.Si.	ecturer	Algebra Coordinator	3	4	10 Agustus 2025	
S S S	SLOs that are imposed SLO-2: Maha	Dra. Nur Era		ecturer	Coordinator			1	
S S S	SLOs that are imposed SLO-2: Maha		awati, M.Si.				Head (of Study Program	
S S S	SLO-2: Maha	on the course			Prof. Dr. Amir Kamal Amir,	M.Sc.	Dr. F	irman, S.Si.,M.Si.	
S									
s	SLO-3: Maha	siswa mampu m	nengidentifikasi ob	ojek, teknik, dan sifa	at dalam matematika dasar, dan me	mbuat konek	si untuk menyelesai	kan masalah	
S	1	asiswa mampu menganalisis suatu masalah matematika dengan logika, analitik, dan struktur sistematis							
		ahasiswa dapat menggunakan pemikiran kritis matematis mereka yang cukup untuk abstraksi dan generalisasi masalah matematika berdasarkan hasil alisis informasi dan data							
Α	SLO ⇒ Course Learning	urse Learning Outcomes							
	After completing this course, it is expected:								
	SLO-2	1: Students will	be able to use the	concepts of group	s and rings to prove theorems in Alg	jebra			
٦		CLO-2: Students will be able to apply theorems to prove other results in Algebra							
	SLO-3	-1: Students will be able to use the concepts of groups and rings to prove theorems in Algebra							
		2: Students will	be able to apply t	neorems to prove o	ther results in Algebra				
s	SLO-4 CLO	3: Students will	be able to commu	inicate mathematica	al ideas both orally and in writing wit	h groups.			
C	CLO ⇒ Sub-CLO								
	Sub-	CLO-1:Understa	nd well the object	ives, uses of course	e material and its relationship to other	er coursesKı	nowing students' initi	al competencies.	
	Sub-	CLO-2:Students	can differentiate	binary operators fro	om non-binary operators, and can ex	press each l	oinary operation as a	a function.	
		Sub-CLO-3: Students can distinguish between a set equipped with a binary operator and whether it is a (sub-) group or not a (sub-) group. Can give examples of semi-groups or monoids that are not groups.							
Learning Outcomes		Sub-CLO-5: Students can express cyclic groups in '+' notation or times notation, apply Euclid's Quotient Algorithm to simplify high-rank numbers and are able to give simple examples of commutative rings from sets of numbers.							
Course		give simple ex	amples of commu	ıtative rings from se	ets of numbers.				

	Sub-CLO-10:Students are able to recognize the properties or characteristics of coset groups and finite abel groups.
	Sub-CLO-11: Students can prove the well-defined nature of intercoset operations, able to provide several normal subgroup criteria.
	Sub-CLO-14: Students are able to prove and give examples of sets with two binary operators which are rings.
	Sub-CLO-4: Students are able to recognize the properties or characteristics of groups and subgroups through proving theorems.
CLO-2	Sub-CLO-5 :Students can express cyclic groups in '+' notation or times notation, apply Euclid's Quotient Algorithm to simplify high-rank numbers and are able to give simple examples of commutative rings from sets of numbers.
	Sub-CLO-6: Students can carry out computations related to permutations and are able to provide examples of permutation groups, especially Sn and An.
	Sub-CLO-7:Students are able to recognize the properties or characteristics of cyclic groups and permutation groups.
	Sub-CLO-9:Students are able to express a group of finite extended variables in the form of a group product.
	Sub-CLO-12: Students can understand the 'similarities' of the structure of two different groups.
	Sub-CLO-13: Students recognize several consequences of the concepts of simple group, center, centralizer and normalizer.
	Sub-CLO-3: Students can distinguish between a set equipped with a binary operator and whether it is a (sub-) group or not a (sub-) group. Can give examples of semi-groups or monoids that are not groups.
CLO-3	Sub-CLO-10: Students are able to recognize the properties or characteristics of coset groups and finite abel groups.
	Sub-CLO-14: Students are able to prove and give examples of sets with two binary operators which are rings.

Correlation between SLOs/CLOs to Sub-CLOs

SI Os that are	SLOs that are			Form of Assessment [*]						
charged	СРМК	K SUB CPMK	Formative		Sum	ative		Weight	Value	Student Score
on the Course			Formative	Case Studies	Written Exam	Presentation	Written Exam			
SLO-4	CLO-3	SUB-CLO-3		15	0	0	0	15		
SLO-3	CLO-2	SUB-CLO-5		20	0	0	0	20		
SLO-3	CLO-2	SUB-CLO-7		0	15	0	0	15		
SLO-3	CLO-2	SUB-CLO-9		16	0	0	0	16		
SLO-3	CLO-1	SUB-CLO-11		17	0	0	0	17		
SLO-4	CLO-3	SUB-CLO-14		0	0	5	12	17		
		•		68	15	5	12	100		

	ourse cription		ets along with one or two give roups, subgroups, cyclic group				s, especially Algebra. The subje	ect matter that will	
	arning Is/Subjects	8. Classification of finite extended abel groups and Betti numbers 9. Theorems related to the properties or characteristics of coset groups and finite abel groups 10. (Sub)normal groups and factor groups, well-defined properties of operations between cosets of normal subgroups 11. Homomorphisms, Kernels and Regions Range 12. Simple Groups, centers of groups and subgroups 13. Rings, homomorphisms between rings, fields + examples							
		Main References							
Ref	erence	 Fraleigh, John B.; A First Course In Abstract Algebra, 5th Edition, Addison Wesley, 1994. Dummit, David S.; Foote, Richard M.; Abstract Algebra, Prentice Hall, 1991. Algebra textbook manuscript abstract 							
		Additional References							
		Textbook, Getting to	Know Algebraic Structures;	From Theory to examples					
Teach	ing Team	n Prof. Dr. Amir Kamal Amir, M.Sc., Dra. Nur Erawati, M.Si.							
	ourse iirement	Linear Δlaehra II							
Week	_	ub CPMK	Penilaian (A	ssesment)	Learning Forms [time es	Content	Weight of Assessment		
	(End-of-sta	ige learning ability) -	Indicator	Techniques & Criteria	Offline	Online		(%)	
1		2	3	4	5	6	7	8	

1	Understand well the objectives,	Formative:	Formative Criteria:	Studying:	Studying:		0
·	uses of course material and its relationship to other coursesKnowing students' initial competencies. (CPMK-1)	ationship to other ursesKnowing students' all competencies (CPMK-1) Ass	Sumative Criteria: Assessment Technique:	Cooperative learning (Cooperative learning)	Self-Directed Learning Participants take teaching materials	College Contract, Strategy plan learning	J
		Sumative:	Non Test				
				2x50	None		
				Other Forms:			
				Cooperative learning (Cooperative learning)			
				Pretest			
				1x50			
2	Students can differentiate binary operators from non-	Formative:	Formative Criteria:	Studying:	Studying:	Overview of the concept of	0
	binary operators, and can express each binary operation as a function. (CPMK-1)	s, and can Gagal diterjemahkan inary operation	Sumative Criteria: Assessment Technique:	Cooperative learning (Cooperative learning)	Project-Based Learning (Project-based Learning)	functions and the definition of binary operators as functions.	
		Sumative:	Test	2x50	Lecture participants do assignments		
		Accuracy of explanation with examples; Accuracy of determining binary	1001	Response and Tutorial:	ussignments		
		operators.		Collaborative learning (Collaborative Learning)	None		
				Quiz			
				1x50			

3	Students can distinguish between a set equipped with a binary operator and whether it is a (sub-) group or not a (sub-) group. Can give examples of semi-groups or monoids that are not groups. (CPMK-1, CPMK-3)	Formative: Gagal diterjemahkan Sumative: Accuracy of examples and proof of whether a set with one binary operator is a (sub-) group, monoid or semi-group. Ability to give group examples.	Formative Criteria: Sumative Criteria: Case Studies (15) dinilai dengan rubrik 01 Assessment Technique: Test and Non-Test	Studying: Cooperative learning (Cooperative learning) 2x50 Studying: Group discussion (Small Group Discussion) 1x50	Studying: Self-Directed Learning Participants take teaching materials None	Group and subgroup definition + examples. A glance at the definition of se migroups and monoids + examples. The concept of isomorphism as the similarity of the algebraic structure of two groups, especially two groups of size 4	15
4	Students are able to recognize the properties or characteristics of groups and subgroups through proving theorems. (CPMK-2)	Formative: Gagal diterjemahkan Sumative: Performance accuracy proof	Formative Criteria: Sumative Criteria: Assessment Technique: Test	Studying: Cooperative learning (Cooperative learning) 2x50 Studying: Other methods Practice questions		Theorems related to the properties of groups, subgroups and monoids	0

5	Students can express cyclic groups in '+' notation or times notation, apply Euclid's Quotient Algorithm to simplify high-rank numbers and are able to give simple examples of commutative rings from sets of numbers. (CPMK-1, CPMK-2)	Formative: Gagal diterjemahkan Sumative: Ability to express cyclic (sub)groups in '+' notation and in multiplication notation, ability to calculate high powers xn or find x^-1, for a number x elements	Formative Criteria: Sumative Criteria: Case Studies (20) dinilai dengan rubrik 01 Assessment Technique: Non Test	Studying: Cooperative learning (Cooperative learning) 2x50 Studying: Group discussion (Small Group Discussion) 1x50	Studying: Self-Directed Learning Participants take teaching materials. None	(Sub-)cyclic groups, especially subgroups of integers, application of Euclid's Quotient Algorithm. Examples of applications in the arena, especially in Zn with two binary operators: the sum operator modulo n.	20
6	Students can carry out computations related to permutations and are able to provide examples of permutation groups, especially Sn and An. (CPMK-2)	Formative: Gagal diterjemahkan Sumative: Computing capabilities with permutations and able to find An, if n is given.	Formative Criteria: Sumative Criteria: Assessment Technique: Test	Studying: Cooperative learning (Cooperative learning) 3x50	Studying: Self-Directed Learning Participants take teaching materials None	Permutation, Equivalent Relations affected by a permutation, orbit, cycle, transposition, Sn symmetry group and dihedral group	0
7-8	Students are able to recognize the properties or characteristics of cyclic groups and permutation groups. (CPMK-2)	Formative: Gagal diterjemahkan Sumative: Accuracy of proof	Formative Criteria: Sumative Criteria: Written Exam (15) dinilai dengan rubrik 01 Assessment Technique: Non Test	Studying: Cooperative learning (Cooperative learning) 3x50	Studying: Self-Directed Learning Lecture participants complete assignments and collect the results of their work None	Theorems related to the properties of cyclic groups and permutation groups.	15

9	Students can apply the concept of function between two groups to express or compare the many elements of the two groups. (CPMK-1)	Formative: Gagal diterjemahkan Sumative: The accuracy of the example and proof that G/H = H G , if given group G and subgroup H.	Formative Criteria: Sumative Criteria: Assessment Technique: Non Test	Studying: Collaborative learning (Collaborative Learning) 3x50 Studying: Project-Based Learning (Project-based Learning) None	Studying: Self-Directed Learning Participants take teaching materials on the internet None	Definition of the set of cosets G/H of a subgroup H of group G, Lagrange's Theorem.	0
10	Students are able to express a group of finite extended variables in the form of a group product. (CPMK-2)	Formative: Gagal diterjemahkan Sumative: The accuracy of examples and evidence of presentation of an abel group extends to the product of Zk and k-tuple groups of integers.	Formative Criteria: Sumative Criteria: Case Studies (16) dinilai dengan rubrik 01 Assessment Technique: Non Test	Studying: Cooperative learning (Cooperative learning) 3x50	Studying: Self-Directed Learning Lecture participants do assignments None	Classification of finite extended abel groups and Betti numbers.	16
11	Students are able to recognize the properties or characteristics of coset groups and finite abel groups. (CPMK-1, CPMK-3)	Formative: Gagal diterjemahkan Sumative: Accuracy in making calculations, calculating indexes and ordering elements	Formative Criteria: Sumative Criteria: Assessment Technique: Test	Studying: Cooperative learning (Cooperative learning) 3x50	Studying: Self-Directed Learning Lecture participants complete assignments and upload their work None	The theorems related to the properties or characteristics of coset groups and abel groups extend finitely.	0

12	Students can prove the well-defined nature of intercoset operations, able to provide several normal subgroup criteria. (CPMK-1)	Formative: Gagal diterjemahkan Sumative: The accuracy of proving the well-defined properties of binary operators between cosets of a normal subgroup, the accuracy of proving the equivalence of several different criteria of a normal subgroup.	Formative Criteria: Sumative Criteria: Case Studies (17) dinilai dengan rubrik 01 Assessment Technique: Test	Studying: Cooperative learning (Cooperative learning) 3x50	Studying: Self-Directed Learning Participants take teaching materials None	Normal subgroups and factor groups, well-defined properties of operations between sets of normal subgroups.	17
13	Students can understand the 'similarities' of the structure of two different groups. (CPMK-2)	Formative: Gagal diterjemahkan Sumative: Ability to find, state and prove homomorphism between groups, including isomorphism between group.	Formative Criteria: Sumative Criteria: Assessment Technique: Test	Studying: Cooperative learning (Cooperative learning) 2x50 Studying: Group discussion (Small Group Discussion), other methods 1x50		Homomorphism, kernel and range, automorphism, basic theorem of homomorphism.	0
14	Students are able to prove and give examples of sets with two binary operators which are rings. (CPMK-1, CPMK-3)	Formative: Gagal diterjemahkan Sumative: The accuracy of the example and the accuracy of the proof that a set is a ring or not a ring	Formative Criteria: Sumative Criteria: Presentation (5) dinilai dengan rubrik 01 Assessment Technique: Non Test	Studying: Other methods Discussion and Presentation 3x50	Studying: Self-Directed Learning Participants take teaching materials and search on the internet None	Ring, homorphism between rings, field + example	5

15-16	Students are able to prove and give examples of sets with two binary operators which are rings. (CPMK-1, CPMK-3)	Formative: Gagal diterjemahkan Sumative: Gagal diterjemahkan	Formative Criteria: Sumative Criteria: Written Exam (12) dinilai dengan rubrik 01 Assessment Technique: Gagal diterjemahkan		Gagal diterjemahkan	12
						100

Matrix of SLO, CLO, and Assessment Method

SLO / CLO	CLO-1	CLO-2	CLO-3
CPL-2 (P2)	Case Studies (Weight 15%) Case Studies (Weight 20%) Case Studies (Weight 17%) Presentation (Weight 5%) Written Exam (Weight 12%)	Case Studies (Weight 20%) Written Exam (Weight 15%) Case Studies (Weight 16%)	
CPL-3 (KU1)	Case Studies (Weight 15%) Case Studies (Weight 20%) Case Studies (Weight 17%) Presentation (Weight 5%) Written Exam (Weight 12%)	Case Studies (Weight 20%) Written Exam (Weight 15%) Case Studies (Weight 16%)	
CPL-4 (KU2)			Case Studies (Weight 15%) Presentation (Weight 5%) Written Exam (Weight 12%)

Evaluation Type and Assessment Weight

Туре	Assessment Weight
Case Studies	68
Written Exam	15
Presentation	5
Written Exam	12
Total	100

Assessment and Evaluation of Student Achievement of CLOs

SLOs that are charged on the Course	CLO	SUB CLO	Form of Assessment [*]							
			Formative	Sumative				Weight	Value	Student Score
				Case Studies	Written Exam	Presentation	Written Exam			
SLO-4	CLO-3	SUB-CLO-3		15	0	0	0	15		
SLO-3	CLO-2	SUB-CLO-5		20	0	0	0	20		
SLO-3	CLO-2	SUB-CLO-7		0	15	0	0	15		
SLO-3	CLO-2	SUB-CLO-9		16	0	0	0	16		
SLO-3	CLO-1	SUB-CLO-11		17	0	0	0	17		
SLO-4	CLO-3	SUB-CLO-14		0	0	5	12	17		
				68	15	5	12	100		

Lampiran Rubrik 01 | ASSESMENT TERTULIS

Kritaria Danilaian	Bobot/Skor Penilaian								
Kriteria Penilaian	5	4	3	2	1/0				
Konsep/ metode yang digunakan	Penjelasan konsep /metode (*) sangat lengkap dan akurat	Penjelasan konsep/metode (*) cukup jelas tetapi beberapa informasi tidak dituliskan secara lengkap.	Penjelasan konsep/metode (*) kurang jelas dan banyak informasi yang tidak dituliskan	Penjelasan yang dituliskan hampir tidak berkaitan dengan konsep/ metode (*)	Tidak memberikan konsep yang dibutuhkan				
Sistematika penulisan/ pembuktian	Sistematika penulisan/ pembuktian sangat jelas dan terstruktur	Sistematika penulisan/ pembuktian cukup jelas namun ada langkah yang hilang Sistematika penulisar pembuktian kurang jel		Sistematika penulisan/ pembuktian tidak jelas	Jawaban tidak benar/ tidak ada				
Interpretasi geometri/ kualitatif/ kuantitatif.	Interpretasi geometri/ kualitatif/ kuantitaBtif (*) tepat dan lengkap	Interpretasi geometri/ kualitatif/ kuantitatif (*) cukup lengkap/ tepat	Interpretasi geometri/ kualitatif/ kuantitatif (*) kurang lengkap/ tepat	Interpretasi geometri/ kualitatif/ kuantitatif(*) tidak lengkap/ tepat	Interpretasi geometri/ kualitatif/kuantitatif(*) tidak benar				
Perhitungan/kesimpulan	Perhitungan/ kesimpulan sangat akurat/tepat dan disertai alasan yang mendasarinya	Perhitungan/ kesimpulan cukup akurat/tepat dan disertai alasan yang mendasarinya	Kesimpulan cukup tepat, namun tidak disertai alasan yang jelas	Perhitungan/ kesimpulan kurang akurat/tepat dan tidak disertai alasan yang mendasarinya	Perhitungan/kesimpulan salah				